
Logic-based Schedulability Analysis for Compositional
Hard Real-Time Embedded Systems

André de Matos Pedro
CISTER/INESC TEC, ISEP
Rua Dr. António Bernardino
de Almeida 431, 4200-072

Porto, Portugal
anmap@isep.ipp.pt

David Pereira
CISTER/INESC TEC, ISEP
Rua Dr. António Bernardino
de Almeida 431, 4200-072

Porto, Portugal
dmrpe@isep.ipp.pt

Luís Miguel Pinho
CISTER/INESC TEC, ISEP
Rua Dr. António Bernardino
de Almeida 431, 4200-072

Porto, Portugal
lmp@isep.ipp.pt

Jorge Sousa Pinto
HASLab/INESC TEC, UM

Rua da Universidade
Braga, Portugal

jsp@di.uminho.pt

ABSTRACT
Over the past decades several approaches for schedulabil-
ity analysis have been proposed for both uni-processor and
multi-processor real-time systems. Although different tech-
niques are employed, very little has been put forward in us-
ing formal specifications, with the consequent possibility for
mis-interpretations or ambiguities in the problem statement.
Using a logic based approach to schedulability analysis in
the design of hard real-time systems eases the synthesis of
correct-by-construction procedures for both static and dy-
namic verification processes. In this paper we propose a
novel approach to schedulability analysis based on a timed
temporal logic with time durations. Our approach subsumes
classical methods for uni-processor scheduling analysis over
compositional resource models by providing the developer
with counter-examples, and by ruling out schedules that
cause unsafe violations on the system. We also provide an
example showing the effectiveness of our proposal.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.2.4 [Software En-
gineering]: Software/Program Verification—Formal meth-
ods, Model checking ; F.4.1 [Mathematical Logic and For-
mal Languages]: Mathematical Logic —Temporal logic

Keywords
Temporal logic, Schedulability analysis, Compositional, Hard
Real-Time Systems, Embedded Systems

Copyright is held by the authors,
CRTS ’13 Vancouver, Canada

1. INTRODUCTION
Schedulability analysis is a very important part of the re-
search that is carried out in real-time systems. Due to the
complex nature of the scenarios that real-time systems face,
functional properties must be coupled with a predictable re-
sponse time, so that the operations are performed safely and
within the expected constraints. Relaxing any of these two
conditions, in the case of hard real-time systems, might lead
to catastrophic events, including the loss of human lives.

Along almost forty years, a bewildering diversity of schedu-
lability tests for hard real-time systems has been proposed to
address the constrains imposed by the required predictabil-
ity. These tests vary considerably in their complexity, ex-
pressivity, and target scheduling policies (e.g., fixed task
or job priority, preemptive or non-preemptive). The liter-
ature [1, 12] reveals that generally schedulability test works
by assuming a worst-case scenario and checking that each
of the involved task gets a sufficient allocation of shared re-
sources or jobs always complete before their deadlines. Nat-
urally, cases that are not ”the worst” will also succeed.

In this paper we consider periodic resource models [23],
[24] for the composability of components each one with its
own set of real-time tasks, providing a rigorous definition
of their timing properties, intending to be able to formally
verify their composition. These definitions are established
by the language and semantics of timed temporal logic, an
approach that is not new in the context of real-time systems
verification [5]. In this paper we also consider a variant of
MTL-

∫
[16] that is well-suited to analyze sequences and du-

rations of timed executions. This type of analysis is sufficient
to solve the schedulability decision problem of periodic re-
source models, and compositional periodic resource models.
The reasons for adopting a logic-based paradigm towards
schedulability analysis are: it becomes more comprehensive
and expressive; rules out potential specification incoherences
typical from informal specifications; and it has some benefits
relatively to the available analysis, not in terms of efficiency
but in terms of easy extension for monitoring approaches
such as the acquisition of the maximum detection delay of

a task as in [26]. As further context to the work, we note
that:

1. the outcome of a classical schedulability analysis is
typically a verdict for a certain set of tasks, but no
counter-examples are shown if the set of tasks is not
schedulable;

2. the behavior of the scheduler is assumed rather than
being explicitly included in the schedulability test;

3. the timing description of the tasks is the unique data
provided by classical analysis methods (i.e., offsets, jit-
ters, periods, deadlines);

4. standard approaches are not possible to extend with
other usefull properties such as monitoring and en-
forcement of real-time properties [22, 21], due to the
restricted definition of their sets of tasks (e.g., defin-
ing a bound for two consecutive instructions, the inter-
arrival time of an event);

5. some real-time literature [26, 27] commonly considers
the estimation of an arrival rate, which implies min-
imization and produces significant issues (e.g., under
and over estimations, local minimums and maximums,
etc.).

Our work intends to integrate the description of the schedul-
ing behavior with the schedulability analysis, which enables
to draw counter-examples when the system is not schedula-
ble. These counter-examples are fundamental for the system
designer to understand and adapt the design accordingly.

Another key point of our approach is that the rigorous of
our definitions enable the integration of formal-verification
techniques such as runtime verification or model checking,
by subsuming the corresponding computational artifacts in
a correct-by-construction way. It opens the possibility of
adopting mature and experimental formal verification tools
[2, 6, 19, 4] that are already available for the scenarios we
intent to certify in future development of our work.

Although this paper’s focus is solely on the schedulability
analysis of compositional periodic resource models under
the rate monotonic (RM) policy, we introduce this work as
a foundational approach for schedulability analysis of com-
positional resource models, on which we intent to use more
advanced schedulability policies and principles in the future.
Moreover, this research work is part of a long term project
whose aim is the development of novel approach for the uni-
fied specification of hard real-time systems (functional and
non-functional requirements), supported by the combination
of off-the-shelf static verification and runtime verification
methods.

We provide a fragment of the metric temporal logic with du-
rations (MTL-

∫
), namely restricted metric temporal logic

with durations (RMTL-
∫

), a schedulability analysis for pe-
riodic resource models and coupled periodic resource models
as well as the encoding of both models in RMTL-

∫
. Our en-

coding allows us to isolate by construction cases where the
worst-case execution time (WCET) violations are unsafe to

the schedulability of the system, and to analyze each com-
ponent knowing only the high-level specifications (instead of
the internals) of the other components, but excludes the in-
crement of components at runtime. A synthetic workload is
also described to exemplify the schedulability analysis using
RMTL-

∫
. For the best of our knowledge this is the first ap-

proach that combines MTL-
∫

with schedulability analysis.

The paper is organized as follows. Section 2 introduces re-
search work that relates to the one presented in this pa-
per. Section 3 introduces the preliminary concepts that are
necessary for our schedulability analysis as a background.
Section 4 describes the syntax and semantics of the MTL-

∫
logic, including a set of necessary axioms. Section 5 in-
troduces the new concept of schedulability analysis using
MTL-

∫
and timed execution traces. Section 6 exemplifies

how to use runtime monitors through a practical applica-
tion of the method of schedulability analysis that we pro-
pose. Finally, Section 7 draws some conclusions and points
to further work directions.

2. RELATED WORK
So far, not many alternative approaches for schedulability
analysis of real-time systems have been proposed nor spe-
cific formalisms for tests have emerged. Here, we describe
alternatives for schedulability analysis based on timed au-
tomata [9, 14], Petri nets [25], and process algebraic [20].

2.1 Automata-based
In the last decade, some efforts have been done to use timed
automaton as a model to check the schedulability of a sys-
tem. Fersman et al. [9, 10] proposes the timed automata
extended with real-time tasks to specify real-time systems as
timed automata but assuming an implicit scheduler. Intu-
itively, the process consists by modeling the scheduling be-
havior (e.g., following the RM, or EDF policies) as a timed
automaton and couple it with the model of the system as
another timed automaton. The reachability analysis is per-
formed to decide if the multiplication of both automata does
not allows the model to reach the error state defined in the
scheduler automaton. Since, the schedulability test remains
a reachability analysis problem, we can solve it with model
checker tools such as UPPAAL [2] and NuSMV [6].

2.1.1 Decidable results of Task Automata
The problem of checking schedulability of a task automaton
is undecidable [11, 15]. Recently, some progress has been
made to show that a significant fragment of task automata
is decidable. Yi et al. [9] proved that the problem of check-
ing schedulability relative to a non-preemptive scheduling
strategy for task automata is decidable, and more gener-
ally proved that the problem of checking schedulability is
decidable for task automata without task feedback (i.e., the
precise finishing time of a task cannot influence the new task
releases) or with fixed computation times (i.e., the best case
execution time is not different from the worst-case execu-
tion time). Indeed, the schedulability problem for a single-
processor system is undecidable over these assumptions but
a open question still remains for decidable results of preemp-
tive schedulers when the computation times of tasks may
vary within a known interval [14].

For multi-processor systems, the problem is also undecid-
able [14]. Krcal et al. [14] proved that the schedulability
of multi-processor system is decidable for non-preemptive
schedulers (as for uni-processor setting) or using tasks with
constant execution times.

2.2 Other Approaches
Timed Petri nets may employ the same decision method
of automata-based approaches for schedulability analysis of
real-time systems. Tsai et al. [25] present timing constraint
Petri nets as a model to specify real-time systems, and decide
its schedulability using reachability analysis of states, where
the timing and behavioral properties should be formalized
in different levels of abstraction. Zonghua and Shin [13]
describes a translation from Timed petri net (TPN) to timed
automata.

The schedulability analysis of real-time systems with aid of
process algebraic was initially proposed by Ben-Abdallah et
al. [3]. Philippou et al [20] formalizes the problem of com-
positional hierarchical scheduling by introducing a process
algebraic framework for modeling resource demand and sup-
ply, which was inspired in the timed process algebra.

3. PRELIMINARIES
In this section we introduce the main concepts that sup-
port our formalization of the schedulability test for periodic
resource models.

3.1 Basic Notions
In the rest of the paper, we will assume tasks sets

Γ = {τ1, τ2, ..., τn},

such that n ∈ N+ is the identifier of periodic tasks, and
τi = (pi, ei) with pi and ei are, respectively, the period and
the worst-case execution time of the periodic task τi; and a
set of periodic resource model Ω = {ω1, ω2, ..., ωm} with

ωj = (τ, π, θ, rm),

where τ ⊆ Γ , π is the replenishment period, θ is the server
budget, and rm is the RM scheduling policy.

The outputs of a resource model ω are sequences of events.
Considering a par (ω, τi) with ω ∈ Ω and τi ∈ τ , each
event can be of one of the following types: a release-event
erelease(ω, τi); a start-event estart(ω, τi); a sleep-event
esleep(ω, τi); a resume-event eresume(ω, τi); or a stop-event
estop(ω, τi). In addition, we assume a parameterized event
ε(ωj , τi, id) that denotes the critical events of a task, where
id is the event identifier, and erenewal(ω) denotes the budget
release of a resource model. We denote sets of events by E .

A sequence of events, also known as execution trace, is an
infinite sequence

ρ = (e1, t1)(e2, t2) · · ·

of time-stamped events (ei, ti) with ei ∈ E and ti ∈ R+. The
sequence satisfies monotonicity and progresses, i.e., ti ≤ ti+1

for all i ∈ N+, and for all t ∈ R+ there is some i > 0 such
that ti > t, respectively.

3.2 Schedulability Analysis of Periodic
Resource Models

The schedulability analysis for periodic resource models is
provided by Shin and Lee [23, 24]. The authors formulate
an analysis based on resource model supply. The supply
bound function sbfω(t) is defined to calculate the minimum
resource supply for every interval of length t as follows:

sbfω(t) =

{
t− (k + 1)(p− e) if t ∈ I,
(k − 1)e otherwise,

where I = [(k+ 1)p− 2e, (k+ 1)p− e]. The value k is given
by

k =

{
x if x > 1

1 otherwise
,

where x =
⌈
t−(p−e)

p

⌉
.

Lehoczky et al. [17] proposed a demand-bound function
dbfRM (τ, t, i) for RM that computes the worst-case cumu-
lative response demand of a task τi ∈ τ for any interval of
length t. It is defined by

dbfRM (τ, t, i) =
∑

τk∈γτ (i)

⌈
t

pk

⌉
. ek,

where γτ (i) = {τ1, ..., τi} is a function that returns a set
of tasks with higher-priority (and including) than task τi.
The demand-bound function for resource models is the same
since the set of tasks is schedulable using the RM policy.
This means that the supply of a resource model shall be
greater than the demand of the set of tasks that a resource
model contains.

The tasks set τ of a resource model is said schedulable ac-
cording to a RM policy if, and only if,

∀τi ∈ τ, ∃ti ∈ [0, pi] s.t. dbfRM (τ, ti, i) ≤ sbfω(ti).

This approach is the state of the art on schedulability anal-
ysis for periodic resource models. We will subsume this
approach with one based on timed temporal logics. Our
approach allows to ensure response time guarantees about
the composition with runtime monitors without employing
great efforts to find more adequate optimization techniques
to find the schedulability answer.

4. RESTRICTED METRIC TEMPORAL
LOGIC WITH DURATIONS

In this section we introduce the RMTL-
∫

, a fragment of
MTL-

∫
[16] where the evaluation is carried out with respect

to sequences of events produced by resource models.

The main motivation for proposing RMTL-
∫

comes from the
fact that restricting some terms and relations over terms, the
logic is suitable for generation of runtime monitors as well as
to thinking statically over real-time constraints. The main
difference between RMTL-

∫
and MTL-

∫
is that the former

uses only the relation ≤, <, and = over terms, and excludes
functions from the language of terms. This restriction allows
us to turn our logic terms always Riemann integrable.

Language of RTML-
∫

terms

δ ::= α | x |
∫ δ ϕ
Language of RTML-

∫
formulae

ϕ ::= p | δ1 ∼ δ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼ρ ϕ2 | ϕ1 S∼ρ ϕ2 | ∃xϕ

Table 1: Syntax of RMTL-
∫

Definition 1 (RMTL-
∫
). Let P be a set of proposi-

tions and V a set of logical variables (interpreted over R).
The syntax of RMTL-

∫
is inductively defined according to

the rules depicted in Table 1, where δ are terms,
∫ δ
ϕ is the

duration of the formula ϕ in the interval [0, δ], x ∈ V, p ∈ P,
ρ ∈ R≥0, ∼∈ {<,≤,=}, and α ∈ R.

We are now able to define the semantic of the MTL-
∫

. The
semantic of MTL-

∫
is separated in two parts: terms and for-

mulas. The semantic of terms is defined using the notation
T JτK(σ, ϑ)t in Table 2. All terms represent numerical values

in R+
0 . The term

∫ δ
ϕ is the integral over the Boolean func-

tion Bϕ(σ,ϑ)(t) (whose return value is 1 if (σ, ϑ, t) |= ϕ, and
0 otherwise). Since Bϕ(σ,ϑ)(t) behaves as a step function, it
is always Riemann integrable. The same is not true in the
MTL-

∫
logic. The semantic of the MTL-

∫
formula is defined

inductively in Table 2, where the satisfability of a formula
ϕ in a model (σ, ϑ) at time t is defined by (σ, ϑ, t) |= ϕ.

Along the remaining of the paper we will frequently refer
to the abbreviations presented in Table 3 in order to ease
the presentation of specific schedulability related specifica-
tion. For illustrative purposes, we now introduce a pratical
example of the expressive power of RMTL-

∫
’s language.

Example 1. To ensure that a task responds in a bounded
response time, the formula ψ1 =⇒ �≤α ψ2 is sufficient.
The proposition ψ1 describes a set of events that may violate
the system, the proposition ψ2 describes the task invocation,
and α is the maximum expected response time bound. Infor-
mally, the formula means that if a fault event occurs, then
the task executes within α time units.

Operator Abbreviation Equivalent Formula

Eventually �∼αϕ true U∼α ϕ

Always �∼αϕ ¬(�∼α¬ϕ)

Next ©ϕ1
ϕ2 ϕ1 U∼∞ ϕ2

Implies Next ϕ1� ϕ2 ¬ϕ1 ∨©ϕ1
ϕ2

Table 3: Syntactic abbreviations for RMTL-
∫

5. SCHEDULABILITY ANALYSIS USING
MTL-∫

Our schedulability analysis consists in the evaluation of a
logic formula over a trace (or a set of traces) produced by a
periodic resource model. Regarding these our approach re-
mains a model-checking problem [7], where the model checks
a set of logic properties, and otherwise generates counter-
examples.

In order to decrease the state space search we can assume for
uni-processor systems the critical instant theorem [18]. This
assumption reduces our problem to just one trace acceptance
for a set of logic properties. This assumptions allows us to
identify the relevant traces and combine our approach with
the foundational real-time systems theory.

We will describe the encoding of the schedulability test for
periodic resource models [23, 24] as well as their composition
using our MTL-

∫
fragment.

5.1 Encoding Notations
To ease the encoding of schedulability analysis properties,
we first introduce some syntactical notations and formulae
abbreviations. Let ω be a resource model in Ω and let τi
be a task in τ . The set of tasks with higher-priority (and
including) than τi for ω is denoted by γτiω . The set of re-
source models with higher-priority (and excluding) than ω is
denoted by γωΩ. For events, we have the following notations:
ε(ω, ·) denotes the set of events that can be generated by
the resource model ω; evs+(ωj , τi) is defined by

evs(ωj , τi) ∨ estop(ωj , τi) ∨ ε(ωj , τi, ·) ∨ erelease(ωj , τi),

with evs(ωj , τi) defined by

estart(ωj , τi) ∨ eresume(ωj , τi) ∨ erenewal(ω),

which specifies all events that a task τi in the resource model
ωj can trigger; evs−(ωj , τi) denotes the formula resulting
from the removal of the erelease(ωj , τi) and estop(ωj , τi)
events from evs+(ωj , τi); and evs∗(ωj , τi) denotes the for-
mula resulting from the removal of the estart(ωj , τi) and
estop(ωj , τi) events from evs+(ωj , τi).

For event occurrences we establish a MTL-
∫

formula that
specifies the exact number of times that a proposition p holds
through the following recurrent function:

occur(p, n)
def
=

{
�¬e if n = 0

¬eU (eU occur(p, (n− 1))) otherwise ,

where p ∈ P and n ∈ N is the number of occurrences to
check. Furthermore, we also introduce the definition of a
function that restricts occur in the sense that it captures
the period for the event under consideration. Such function
is the following:

µ(e, te, pe, 0)
def
= �¬e,

µ(e, te, pe, (n+ 1))
def
= ¬eU=(pe−te) (eU≤te o(e, te, pe, n)),

where te is the time that event e consumes, and pe the pe-
riod of the event e. This definition allows us to restrict the

Evaluation of RMTL-
∫

terms

T JαK(σ, ϑ)t = α
T JxK(σ, ϑ)t = ϑ(x)

T J
∫ δ ϕK(σ, ϑ)t =

{∫ t+T JδK(σ,ϑ)t
t Bϕ(σ,ϑ)(t∗) dt∗ if T JδK(σ, ϑ)t ≥ 0

0 otherwise

Evaluation of RMTL-
∫

formulas

(σ, ϑ, t) |= p iff σ(p)(t) = true and t < |σ|
(σ, ϑ, t) |= δ1 ∼ δ2 iff T Jδ1K(σ, ϑ)t ∼ T Jδ2K(σ, ϑ)t
(σ, ϑ, t) |= ϕ1 ∨ ϕ2 iff (σ, ϑ, t) |= ϕ1 or (σ, ϑ, t) |= ϕ2

(σ, ϑ, t) |= ¬ϕ iff (σ, ϑ, t) 6|= ϕ
(σ, ϑ, t) |= ϕ1 U∼ρ ϕ2 iff ∃t′ ∈ R≥0 st. t ≤ t′ ∼ t+ ρ ∧ (σ, ϑ, t′) |= ϕ2, and st. ∀t′′ ∈ R≥0, t ≤ t′′ < t′, (σ, ϑ, t′′) |= ϕ1

(σ, ϑ, t) |= ϕ1 S∼ρ ϕ2 iff ∃t′ ∈ R≥0 st. t− ρ ∼ t′ ≤ t ∧ (σ, ϑ, j) |= ϕ2, and ∀t′′ ∈ R≥0, t
′ < t′′ ≤ t, (σ, ϑ, t′′) |= ϕ1

(σ, ϑ, t) |= ∃xϕ iff ∃v ∈ R st. (σ, ϑvx, t) |= ϕ

Table 2: Semantic of RMTL-
∫

occurrence of e by a the period pe. In the following we in-
troduce an example to give, using MTL-

∫
, the occurrences

of a certain event in a trace.

Example 2. Suppose that we require to minimize the pa-
rameter z of the following formula

�≤α occur(ε(ω, τi, ·), z).

Informally, the formula indicates that there exists at most
z occurrences of ε(ω, τi, ·) until α time units. The maximal
value to which z can be assigned is the positive infinity (∞).
We select this maximum for z as the initial point, and de-
crease successively the variable z until a the formula holds
or zero is achieved. This allows to find a value for z in the
interval [0,∞) and to obtain the exact number of events that
a trace contains. Note that this is not trivially solved, and
some assumptions about the trace must be made, such as the
number of events that are required to minimize z in practice
(e.g., ∞ is replaced by |ρ|, the length of trace ρ).

5.2 Encoding Periodic Resource Models
Schedulability analysis over the language of RMTL-

∫
is di-

vided in two parts: the encoding of the scheduler’s behavior
– including their scheduling policy and workload parameters
– and the consequent schedulability test. With both parts
holding, we are able to evaluate if a given set of workload
parameters is enough to be schedulable over a certain sched-
uler policy. We begin by detailing the encoding phase and
the schedulability test.

The behavior of the scheduler is specified by several for-
mulas within capture the budget supply, the schedulability
policy, the task durations, and some intrinsic settings of the
scheduler. Assuming a correct release of events, the budget
supply is specified by the formula

φ(ω) ≡ �≤∞ (erenewal(ω)� rp(ω)) ,

where

rp(ω) ≡
(
�=π erenewal(ω)

)
∧
∫ π ∨

τi∈τ

evs+(ω, τi) ≤ θ,

ω is one resource model, π and θ their renewal period and
budget, and erenewal(ω) is the budget renewal event. This

formula states that for each occurrence of the event
erenewal(ω) in the resource model ω, the duration of the
other events until π time units does not overpasses the bud-
get θ per period π.

For the partial order of the task releases we introduce the
MTL-

∫
formula

η(ω) ≡ �≤∞
∧
τi∈τ

(erelease(ω, τi)� sq(ω, τi)) ,

where

sq(ω, τi) ≡ ev(ω, τi) U≤pi estop(ω, τi),

ev(ω, τi) ≡

 ∨
τk∈γ

(τi−1)
ω

evs+(ω, τk)

 ∨ evs−(ω, τi)

and γ
(τi−1)
ωj denotes the set of higher-priority tasks, exclud-

ing events triggered by the task τi. This formula means
that for every event erelease(ω, τi) there is always an event
estop(ω, τi), and that the events occuring before estop(ω, τi)
should be any event from τi’s higher-priority tasks.

The duration of tasks allocated to one resource model is
specified by the formula

ψ≤(ω) ≡ �≤∞
∧
τi∈τ

(
erelease(ω, τi)� du≤(ω, τi)

)
,

where

du≤(ω, τi) ≡
∫ pi ∨

τk∈γ
(τi)
ω

evs+(ω, τk) ≤ ei.

Note that the ≤ operator could be changed to ≥ in order to
specify the absolute WCET of the task set. We denote the
duration of a task by the ≥ operator as ψ≥(ω).

In order for our formalization to work, we still specify some
other features such as the precedence of the event estop(ω, τi)
(i.e., each event estart(ω, τi) is always followed by an event
estop(ω, τi), and vice-versa), the number of release events,
and the time period at which the release of events its trig-
gered. The precedence of the event estop(ω, τi) is specified

by the formula

ξ1(ω) ≡
∧
τi∈τ

(estop(ω, τi)� pr(ω, τi)) ,

where

pr(ω, τi) ≡ es(ω, τi) S≤pi estart(ω, τi),

and

es(ω, τi) ≡

 ∨
τk∈γ

(τi−1)
ω

evs+(ω, τk)

 ∨ evs∗(ω, τi).

The release of events is captured by the recursive function
µ(e, te, pe, n). To ensure the periodicity of all events (erelease
and r∗) for certain t time units, we introduce the formula

ξ2(ω, t) ≡ oc(ω, t) ∧ µ
(
erenewal(ω), π, 0,

⌊
t

π

⌋)
,

where

oc(ω, t) ≡
∧
τi∈τ

µ

(
erelease(ω, τi), pi, 0,

⌊
t

pi

⌋)
,

⌊
t
π

⌋
is the number of occurrences of erenewal(ω) in t,

⌊
t
pi

⌋
is the number of occurrences of erelease(ω, τi) in t, π is the
period of the budget renewal of the resource model ω, and pi
is the period of the task τi. Note that this formula is able to
specify the number of events that can be released in t units
of time for a task or a periodic resource model.

The encoding of the periodic resource model is given by

PRM(ω, t) ≡ φ(ω) ∧ η(ω) ∧ ψ≥(ω) ∧ ξ1(ω) ∧ ξ2(ω, t),

where ω is defined according to certain parameters and a
workload, which allows us to unroll the sub-formulas. This
concludes the formalization of the periodic resource model’s
behavior in RMTL-

∫
.

5.3 Encoding Coupled Periodic Resource
Models

Here we propose an encoding of coupled periodic resource
models and an analysis that ensures non-interference, and
avoids priority inversion between resource models due to
WCET violations.

The budgets that each resource model is allowed to use is
specified by the formula

φΩ(t) ≡
∧
ω∈Ω

(
φ(ω) ∧ µ

(
erenewal(ω), π, 0,

⌊
t

π

⌋))
.

With this formula, each periodic resource model meets the
settings assigned to it for a given time t.

Other two definitions need to be formulated. One describes
the fixed priority behavior of the periodic resource models,
and the other describes the execution time allowed to a given
set of resource models and their respective task sets.

The partial order of the task events for a set of resource
models Ω is specified by the formula

η(Ω) ≡ �≤∞
∧
τi∈τ

∧
ω∈Ω

(erelease(ω, τi)� po(Ω, ω, τi)) ,

where

po(Ω, ω, τi) ≡
(
re(Ω, ω, τi) ∨ evs−(ω, τi)

)
U≤pi estop(ω, τi),

and

re(Ω, ω, τi) ≡
∨
ω∈γωΩ

∨
τj∈τ

evs+(ω, τj) ∨
∨

τk∈γ
(τi−1)
ω

evs+(ω, τk).

The formula re(Ω, ω, τi) describes the resource events that
can occur befor an event estop(ω, τi) event.

The execution time allowed for a set of resource models Ω
is defined by

ψ≤Ω (t) =
∧
ω∈Ω

(
ψ≤(ω) ∧ oc(ω, t)

)
.

To specify the worst-case we can use ψ≥(ω) instead of ψ≤(ω).

Substituting the above formula we have ψ≥Ω (t).

The composition of periodic resource models is encoded by
the RMTL-

∫
formula

CPRM(Ω, t) ≡ φΩ(t) ∧ η(Ω) ∧ ψ≤Ω (t) ∧

(∧
ω∈Ω

ξ1(ω)

)
.

5.4 Schedulability Test
To provide schedulability tests for our encodings we need to
find a model that satisfies the PRM formula for resource
models, and the CPRM formula for a composition of re-
source models. By the semantic definition of RMTL-

∫
we

need to find an observation, a logical environment, and a
duration in accordance with the specified properties. This
behavior is formulated by the following definitions.

Definition 2. Let ω be a resource model in Ω. The re-
source model ω is schedulable if and only if, there exists a
trace ρ of duration t such that PRM(ω, t) is satisfied, and
the duration of ρ is greater or equal to the maximum value
of pi in τ .

Definition 3. Let Ω be a set of resource models, and ω
a resource model in Ω. The composition of resource models
Ω is schedulable if and only if, there exists a trace ρ with
duration t such that CPRM(Ω, t) holds and t of trace ρ is
greater or equal than the maximum pi ∈ τ , of all resource
models in ω.

Summarizing our definitions states that our schedulability
decision problem is a satisfiability problem of a trace re-
garding a RMTL-

∫
formula.

5.5 Feasible Tests
Enconding the schedulability test is not enough to ensure
that we always obtain a positive or negative answer. In

RS-A

RS-C

ts1
εidle

Pts1 Pts1Pts1 Pts3Pts2Pts3Pts2

εidle
ts1

Pts1 Pts2

Pattern C

ts1 ts1ts2 ts3 ts3

estart(ωC , τ1) eresume(ωC , τ1)

ts2 ts3

estart(ωA, τ1)

ts3 ts2 ts1 ts2 εidle

Pattern A

Pts1

ρ

estart(ωA, τ1) estart(ωA, τ1)
estart(ωA, τ2)

estart(ωA, τ3)

eresume(ωA, τ3)

estart(ωA, τ2) estart(ωA, τ3)

eresume(ωA, τ3)

estart(ωA, τ2)

estart(ωA, τ1)
eresume(ωA, τ2)

eresume(ωC , τ1)

estop(ωC , τ1)estop(ωA, τ1)
estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ3)

esleep(ωC , τ1)

estop(ωA, τ1)

estop(ωA, τ2)

esleep(ωA, τ3)

estop(ωA, τ1)

estop(ωA, τ3)

esleep(ωC , τ1)
esleep(ωA, τ2)

estop(ωA, τ1)

estop(ωA, τ2)

εidle εidlets1
ts3 ts1 ts3

estart(ωA, τ3)

esleep(ωC , τ1)

estart(ωC , τ1)

Figure 1: Example of patterns and the global trace generated by the composition of resource models defined in the Table 5

order to cope with this problem, we make the necessary as-
sumption on the structure of traces so that their evaluation
indeed produces some verdict, i.e., if the system under con-
sideration is schedulable or not.

To find the worst execution trace we begin by the introduc-
tion of the following definition.

Definition 4. The worst execution of a resource model
is a trace that complains the budgets supply, the schedulabi-
lity policy, the WCET of a task set, and a restricted set of
intrinsic formulas.

To generate the worst execution trace, we can adopt two dis-
tinct strategies. On one hand, we can assume some theorem
that gives freely and by construction the worst trace that
a system can generate (e.g., for uni-processor systems we
could adopt the critical instant theorem [18]). On another
hand, we can rewrite our schedulability decision test into a
Boolean satisfability problem. In this paper, we will focus
only on the first one, and address the second one to further
work. However, we believe that the last one is able to extend
schedulability analysis for multi-processor systems.

Given a worst execution trace, we are able to evaluate the
validity of such formula using RMTL-

∫
for certain task set

settings, and to decide if the trace is valid or invalid among
the logic formulas that describe the scheduler behavior. In
this way, the process remains an evaluation of the logical for-
mula PRM or CPRM for a given trace, instead of checking
all traces.

Before introducing the example, we need to make two notes.
Our schedulability analysis does not strongly assume the be-
havior of the scheduler (e.g., the periodic resource model),
and if the decision is negatively affirmed, a counter-example

is returned (i.e., a trace). We can also state that for ev-
ery trace generated by a scheduler if the behavior does not
correspond to the specified one then the scheduler is not a
periodic resource model.

We will introduce our example assuming the critical instant
theorem. Assuming this theorem we can find the worst exe-
cution trace for a certain workload settings. This problem is
converted to an acceptance problem. We only need to apply
our evaluation of RMTL-

∫
formulas to draw a verdict about

the schedulability.

6. EXEMPLIFICATION OF OUR
SCHEDULABILITY ANALYSIS

Our schedulability analysis for several period resource mod-
els relax the truth notion of the WCET. This means that
the WCET of a task (or several tasks) can be erroneously
estimated, and ensures that the remain resource models are
schedulable. In the following, we present an example of how
to use the Definition 2 and Definition 3 for periodic resource
models, and a composition of resource models, respectively.

To demonstrate in practice the schedulability analysis using
our logic fragment, a synthetic workload will be described.
Suppose, for example, a workload composed by three com-
ponents, four tasks, and two monitors as depicted in Ta-
ble 5. By Definition 3 we may conclude that the workload is
schedulable if there exists a trace that complaints our logic
restrictions.

6.1 Unfold the RMTL-∫ formulas
Our schedulability analysis provides two definitions for sche-
dulability testing. According to Figure 1, we will explain
step-by-step how the evaluation is performed. Beginning by
unfolding the φ(ω) of the PRM formula for the resource
model RS-C, we have the formula on Table 4. The example

φ(RS-C) True �≤4

(
erenewal(ω) =⇒

(
�=5 erenewal(ω)

)
∧
∫ 5 evs+(RS− C, τ1) ≤ 1

)
ψ≥(RS-C) True �≤10¬ (erelease(RS-C, τ1)) ∨

(
¬ (erelease(RS-C, τ1)) U≤1

∫ p1 evs+(RS-C, τ1) ≥ e1
)

Trace
erenewal(RS-A), erenewal(RS-C), estart(RS-A, τ1), estop(RS-A, τ1), estart(RS-A, τ2), erenewal(RS-C), estop(RS-A, τ2), estart(RS-A, τ3),

erenewal(RS-A), erenewal(RS-C), esleep(RS-A, τ3), · · ·

Table 4: Unfold of the formulas φ(RS-C) and ψ≥(RS-C) and their truth value in accordance with trace ρ.

is for a trace with duration 4 but the truth value is the same
for the Figure 1. Note that this formula needs to be fed
with traces whose durations are multiples of 5. Otherwise
the meaning of the formula is false due to the eventually
operator. The ψ≥(ω) formula ensures that the task can be
executed by their WCET. Since the resource model RS-C
only contains one task, we need to ensure the worst duration
for this task as specified in Table 4. We evaluate the for-
mula with a trace of duration 10. The remaining formulas
η(ω), ξ1(ω), ξ2(ω, t) are trivially satisfied since we have only
one task in our resource model RS-C. Note that the release
events of the periodic resource models and the tasks are not
considered in trace ρ to decrease the trace complexity, but
they are considered when the formulas are evaluated.

Considering the resource model RS-A, which has a more
elaborated formula after its unfolding, we are able to ex-
emplify why the composition of two schedulable resource
models are not schedulable when coupled. In Figure 1 we
have generated a counter-example, namely, the trace ρ. Ap-
plying the formula CPRM for the composition, the formula
η(Ω) does no hold since it is impossible to force the con-
sumption of the WCET of a task until its next period (only
five units can be assigned until the period of the next execu-
tion). If we change the period of the task τ1 in RS-C to value
50 instead of 33 our composition of resource models RS-A
and RS-C is schedulable. We can check this informally by
looking at Figure 1, unfold our formula CPRM and draw a
verdict for each formula of the resulting conjunction.

7. CONCLUSION AND FURTHER WORK
In this paper we have introduced a novel approach to sche-
dulability analysis based on timed temporal logics. Com-
pared with classical methods, our approach has a built-in
scheduler behavior; avoids the rate approximations of events
as experienced in [26], allows us to extend this analysis for
runtime monitoring architectures by ensuring the maximum
detection delay of the monitors with a simple response time
RMTL-

∫
formula; and supplies a predictable trace set of

traces that can be analyzed prior to the execution and pro-
vide counter-examples.

In terms of future work, our aim is to implement a veri-
fication platform that incorporates the ideas presented in
this paper with primary focus on the automatic synthesis
of RMTL-

∫
specifications into runtime monitors and cor-

responding program instrumentation. Alternatively, we are
also interested in encoding our schedulability test into reach-
ability analysis and use model checking tools such as e.g. the
NUSMV model checker tool [6] to check them, or by using
statistical methods to solve such issue, which is commonly
natural in cases where the previous methods do not have
enough resources to do the job. Yet another alternative is to
encode our language in some formal verification framework,
such as the Why3 or BoogiePL [8] intermediate verification

RS Setting Task Setting

rsid π θ γ
(rsid)
Ω id pid γ

(id)

(rsid)
eid

RS-A 10 8 {rs-C}
ts1 14 ∅ 3

ts2 20 {ts1} 5

ts3 27 {ts1, ts2} 7

RS-C 5 1 ∅ ts1 33 ∅ 6

Table 5: A synthetic workload scheme

languages, and rely on their backend provers to improve the
chances of automatically proving the properties.

Acknowledgments
This work was partially supported by National Funds
through FCT (Portuguese Foundation for Science and Tech-
nology) and by ERDF (European Regional Development
Fund) through COMPETE (Operational Programme ’The-
matic Factors of Competitiveness’), within projects Ref.
FCOMP-01-0124-FEDER-022701 (CISTER), FCOMP-
01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-
FEDER-020486 (AVIACC).

REFERENCES
[1] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell,

and A. J. Wellings. Fixed priority pre-emptive
scheduling: an historical perspective. Real-Time Syst.,
8(2-3):173–198, March 1995.

[2] G. Behrmann, A. David, K. G. Larsen, J. Hakansson,
P. Petterson, W. Yi, and M. Hendriks. UPPAAL 4.0.
QEST ’06, pages 125–126, 2006.

[3] H. Ben-Abdallah, J. Choi, D. Clarke, Y. S. Kim,
I. Lee, and H. Xie. A process algebraic approach to
the schedulability analysisof real-time systems.
Real-Time Syst., 15(3):189–219, 1998.

[4] F. Bobot, J. C. Filliâtre, C. Marché, and A. Paskevich.
Why3: Shepherd Your Herd of Provers. In Boogie
2011: First International Workshop on Intermediate
Verification Languages, pages 53–64, 2011.

[5] A. Burns and T. M. Lin. An engineering process for
the verification of real-time systems. Form. Asp.
Comput., 19(1):111–136, 2007.

[6] A. Cimatti, E. M. Clarke, F. Giunchiglia, and
M. Roveri. Nusmv: a new symbolic model checker.
International Journal on Software Tools for
Technology Transfer, 2(4):410–425, 2000.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[8] Robert Deline, K. Rustan, and M. Leino. Boogiepl: A
typed procedural language for checking
object-oriented programs. Technical report, 2005.

[9] E. Fersman, P. Krcal, P. Pettersson, and W. Yi. Task
automata: Schedulability, decidability and
undecidability. Inf. Comput., 205(8):1149–1172, 2007.

[10] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi.
Schedulability analysis of fixed-priority systems using
timed automata. Theor. Comput. Sci., 354(2):301–317,
2006.

[11] E. Fersman, P. Pettersson, and W. Yi. Timed
Automata with Asynchronous Processes:
Schedulability and Decidability. TACAS ’02, pages
67–82, 2002.

[12] C. J. Fidge. Real-time schedulability tests for
preemptive multitasking. Real-Time Syst.,
14(1):61–93, January 1998.

[13] Z. Gu and K. G. Shin. Analysis of event-driven
real-time systems with time petri nets: A
translation-based approach. DIPES ’02, pages 31–40,
2002.

[14] P. Krčál, M. Stigge, and W. Yi. Multi-processor
schedulability analysis of preemptive real-time tasks
with variable execution times. FORMATS’07, pages
274–289, 2007.

[15] P. Krčál and W. Yi. Decidable and undecidable
problems in schedulability analysis using timed
automata. volume 2988 of TACAS’04, pages 236–250.
Springer-Verlag, 2004.

[16] Y. Lakhneche and J. Hooman. Metric temporal logic
with durations. Theor. Comput. Sci., 138(1):169–199,
1995.

[17] J. Lehoczky, Lui Sha, and Y. Ding. The rate
monotonic scheduling algorithm: exact
characterization and average case behavior. In Real
Time Systems Symposium, pages 166–171, 1989.

[18] C. L. Liu and James W. Layland. Scheduling
algorithms for multiprogramming in a hard-real-time
environment. J. ACM, 20(1):46–61, January 1973.

[19] Dillon Pariente and Emmanuel Ledinot. Formal
Verification of Industrial C Code using Frama-C: a
Case Study. FoVeOOS’10, 2010.

[20] Anna Philippou, Insup Lee, Oleg Sokolsky, and
Jin-Young Choi. A process algebraic framework for
modeling resource demand and supply. FORMATS’10,
pages 183–197, 2010.

[21] L. Pike, A. Goodloe, R. Morisset, and S. Niller.
Copilot: a hard real-time runtime monitor. RV’10,
pages 345–359, 2010.

[22] S. Pinisetty, Y. Falcone, T. Jéron, H. Marchand,
A. Rollet, and O. Nguena Timo. Runtime enforcement
of timed properties. RV’13, pages 229–244. 2013.

[23] I. Shin and I. Lee. Periodic Resource Model for
Compositional Real-Time Guarantees. RTSS ’03,
pages 2–13, 2003.

[24] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM Trans. Embed.
Comput. Syst., 7(3):30:1–30:39, 2008.

[25] J. P. Tsai, S. J. Yang, and Y. Chang. Timing
constraint petri nets and their application to
schedulability analysis of real-time system
specifications. IEEE Trans. Softw. Eng., 21(1):32–49,
1995.

[26] H. Zhu, M. B. Dwyer, and S. Goddard. Predictable
Runtime Monitoring. ECRTS ’09, pages 173 –183,
2009.

[27] H. Zhu, S. Goddard, and M.B. Dwyer. Selecting server
parameters for predictable runtime monitoring.
RTAS’10, pages 227–236, 2010.

